首页> 外文OA文献 >Investigating RNN-based speech enhancement methods for noise-robust Text-to-Speech
【2h】

Investigating RNN-based speech enhancement methods for noise-robust Text-to-Speech

机译:研究基于RNN的语音增强方法,用于抗噪声的文本到语音

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quality of text-to-speech (TTS) voices built from noisy speech is compromised. Enhancing the speech data before training has been shown to improve quality but voices built with clean speech are still preferred. In this paper we investigate two different approaches for speech enhancement to train TTS systems. In both approaches we train a recursive neural network (RNN) to map acoustic features extracted from noisy speech to features describing clean speech. The enhanced data is then used to train the TTS acoustic model. In one approach we use the features conventionally employed to train TTS acousticmodels, i.e Mel cepstral (MCEP) coefficients, aperiodicity values and fundamental frequency (F0). In the other approach, following conventional speech enhancement methods, we train an RNN using only the MCEP coefficients extracted from the magnitude spectrum. The enhanced MCEP features and thephase extracted from noisy speech are combined to reconstruct the waveform which is then used to extract acoustic features to train the TTS system. We show that the second approach results in larger MCEP distortion but smaller F0 errors. Subjective evaluation shows that synthetic voices trained with data enhanced with this method were rated higher and with similar to scores to voices trained with clean speech.
机译:从嘈杂的语音中建立的语音转换(TTS)语音的质量受到影响。已显示在训练之前增强语音数据可以提高质量,但仍首选使用干净语音创建的语音。在本文中,我们研究了两种不同的语音增强方法来训练TTS系统。在这两种方法中,我们训练递归神经网络(RNN),以将从嘈杂语音中提取的声学特征映射到描述干净语音的特征。然后,增强的数据将用于训练TTS声学模型。在一种方法中,我们使用常规用于训练TTS声学模型的特征,即梅尔倒谱(MCEP)系数,非周期性值和基频(F0)。在另一种方法中,遵循常规的语音增强方法,我们仅使用从幅度谱提取的MCEP系数训练RNN。增强的MCEP特征和从嘈杂语音中提取的相位被组合以重建波形,然后将其用于提取声学特征以训练TTS系统。我们表明,第二种方法导致较大的MCEP失真,但较小的F0误差。主观评估显示,使用该方法增强的数据训练的合成语音的评分较高,并且得分与使用干净语音训练的语音相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号